本周的当头一棒,有多少加密货币的拥趸,从“技术乐观者”变成了“科技保守者”。
12 月 9 日,谷歌公布了旗下最新、最强大的量子计算芯片 Willow,它拥有史上最多的 105 个量子比特。更重要的是,在量子比特增加之后,Willow 在错误率的控制取得了突破性进展。
图片来源:Google
Willow 发布后,谷歌股价立刻飙升,两天内涨幅达 10%。比特币价格则应声下跌,最低时下挫了 6%。
问题随之而来,赞叹科技美好,不耽误担心自己的钱包:我那比特币密钥,还……还灵么?
2019 年,谷歌曾利用一台 54 位的量子计算机 Sycamore,证明了“量子优越性”,即量子计算机相比经典计算机,存在指数级的算力碾压。当时谷歌用 200 秒时间,完成了经典计算机需要一万年才能完成的计算任务。
图片来源:Google
而这一次,Willow 在算力测试中,进一步将理论算力差距拉大到了天文数字的级别。此次 Willow 用 5 分钟完成的计算任务,如果用普通的超级计算机,需要 10^25 年,比宇宙的寿命还长。
谷歌量子 AI 部门的创始人 Hartmut Neven 在博客中表示:Willow 表现出的算力碾压太夸张,夸张到像是借用了平行宇宙里的算力。
图片来源:Google
量子计算机理论上蕴含的超强算力,一旦被用于通用计算机的应用场景,巨大的想象空间随之而来:一切的加密算法,一切对算力敏感的场景如加密货币、AI,都将改变成我们难以预期的模样。
量子计算,靓在哪?
计算机的基本构成单位是“比特”。
经典计算机的比特是宏观的。比如电路的通、断,分别表示了 1 和 0 两种状态,包括光信号,以及磁盘的扇区,储存单元,都是一样。
一枚量子芯片丨Google
它们在宏观中的表现是高度确定的,即便是最先进的集成电路上,栅极尺寸只有十几纳米的晶体管,接通时,内部也是数以亿计的电子流动,所以可以抵抗外界干扰。
量子计算器的“比特”,则由微观层面的量子构成。单个量子的状态是高度不确定的,即处于“叠加态”,仅仅是测量其状态,也可能导致状态改变——有点像量子力学领域的“测不准原理”。
量子计算的根本优势也在于此。因为处于“叠加态”,其计算能力提升并非单纯的在于时钟频率有多高,而是利用量子力学的特性进行并行计算,这是与经典计算机完全不同的计算模式。
因为量子比特很不稳定,为减少错误,量子计算机往往要在一个高度受控制的环境中运行。谷歌之前就将量子计算机封装在一个密闭金属容器里,容器内部的温度只有 10 毫开尔文(1 开尔文的百分之一),接近绝对零度。还有研究者表示,因为量子比特会受到宇宙射线的干扰,应该把计算机放进地底或山洞里以减少干扰。这些手段有效果,但并不足以消除错误。
Google量子计算实验室中最显眼的就是降温装置丨Google
实际上,经典计算机也会出现错误,过去主要的解决方法是增加比特,作为“冗余位”,来实现信息的校验和修正。这一思路从计算机的硬件层、通讯协议层、软件层,无处不在。
但对于量子计算机来说,增加比特是很困难的,因为你无法直接测量量子比特是否存在错误,增加比特可能意味着“用不可靠的比特去纠正不可靠的比特”,最后的结果依然不可靠。
图片来源:Google
谷歌采用的方法,是通过一种“网格化”的排布,来进行纠错。Willow 采用了 7X7 的网格排布,其中 49 个量子作为数据比特,另外有 48 个量子用于测量。通过这种方式,谷歌“突破了纠错的平衡点”,即增加比特之后,能实现错误减少。
这是自计算机科学家 Peter Shor 1995 年提出“量子纠错”概念以来的一次重大突破。根据谷歌发表的论文,如果未来进一步将量子比特增加,错误率将会指数级下降,降到 10^-10 量级。
图片来源:Google
这为量子计算描绘了一个更值得期许的未来。
我的比特币,还保得住么?
Willow 的发布确实对加密货币市场造成了冲击。